Chat with us, powered by LiveChat


Tactile Sensor & Tactile Sensing Technology

圧力プロファイル-ホーム-キャプチャ-タッチ-blue.jpg

Definition of Tactile sensing

Tactile sensing relates to mapping contact pressures across a surface, often across complex surfaces like the hand, head, and other human body parts.

The more often-used terms "pressure" and "force" are related to "tactile," but both cannot capture the full complexity of contact mechanics. "Pressure" is a scalar value capturing solely magnitude and "force" is a vector expressing magnitude and direction.

Tactile measurement goes beyond by portraying the magnitude and distribution of contact pressures between two objects over an area as a matrix.


 
赤い点

圧力

全方向スカラ

赤い点+方向右上向き矢印

一方向ベクトル

触覚グラフ

触覚

多自由度サーフェス

 
 
Text_background_block-xlarge.jpg

How does tactile sensing Work?

Tactile sensing is the technology of mapping and measuring the contact mechanics between two objects. Tactile sensing is closely related to pressure and force.

If you are searching for pressure measurement and mapping solutions, there are two main types of sensors: capacitance-based or resistance-based (piezoresistive sensors). Whereas resistive sensors work by measuring changes in the resistance of a semi-conductive materials, capacitive sensors work by measuring changes in the gap distance between two electrodes.

To function, the semi-conductive inks on a resistive sensor must go from a non-contacting state to a contacting state so the sensor performance is poor at low pressures.  As the electrodes contact and rub against one another, the surface properties change on a microscopic level, which also changes the sensor behavior and thus requires frequent re-calibration or software compensation.

Tactile sensor hand graphic
 
Text_background_block-xlarge.jpg

THE BENEFITS OF CAPACITIVE TACTILE SENSOR

The benefits of capacitive technology are that the two electrodes no physical interaction and operate in an elastic region, so the sensor is more sensitive and stable.  

Another key benefit is that electrodes can be formed from any conductive material (conductive cloth, FPCB, metal fixtures) giving our sensors a wide range of design flexibility.

Capacitive tactile sensing has emerged as the preferred method for capturing contact-based pressure changes due to sensitivity, repeatability, stability and design flexibility.

A Comparison of tactile sensors

静電容量式触覚センサ 抵抗性触覚センサ
建設 導電性材料と圧縮された 誘電物質に分離 フィルムに印刷された抵抗インク
感度 優れた フェア
再現性 優れた 貧しい
要素数 良い 優れた
設計の融通性 優れた フェア
速度 フェア 優れた
温度安定性 優れた フェア
 

what is Capacitance?

静電容量は、電荷を蓄積するオブジェクトの能力の尺度であり、示されているように、領域AがエアギャップDで分離された2つの電極の古典的な物理学クラスの例を通じて数え切れないほど実証されています。エアギャップが減少すると、静電容量Cが増加します。

この特性を利用して、スプリングとして機能する独自の圧縮性誘電体マトリックスを使用して電極を分離することにより、センサーパッドとアレイを構築します。精密製造技術は優れた再現性と感度を可能にし、先進導電性材料はフレキシブル性、伸縮性、工業用、その他のハイブリッドセンサーデザインを可能にします。カスタムセンサーソリューションを作成する際には、静電容量センサーの設計が単純なため、柔軟性が非常に高くなります。

当社のアレイセンサー

To build our Tactile Array Sensors, we arrange electrodes as orthogonal, overlapping strips separated by a proprietary compressible dielectric matrix, which acts as a spring. A distinct capacitor is formed at each point where the electrode strips overlap.

Precision manufacturing techniques allow excellent repeatability and sensitivity, while advanced conductive materials allow for conformable, stretchable, industrial, and other hybrid sensor designs.

By selectively scanning a single row and column, the capacitance, or local pressure, at that location is measured. Our proprietary drive and conditioning electronics can scan through an array at high speed while optimizing settings to achieve the maximum sensor response from each force sensing element.


 
静電容量方程式
触覚センサーのしくみ
アレイセンサーの説明-アレイセンサーのレイアウト
 

Conformable

このセンサーを複雑な表面に巻き付ける、成型する、または折りたたむ

ハイブリッド

超薄型でフラットマウントと緩やかな湾曲が可能

インダストリアル

極端な気温や極端な圧力に対応

ストレッチ

データの正確性を維持しながら撓み変形可能

 
 
English한국어日本語English